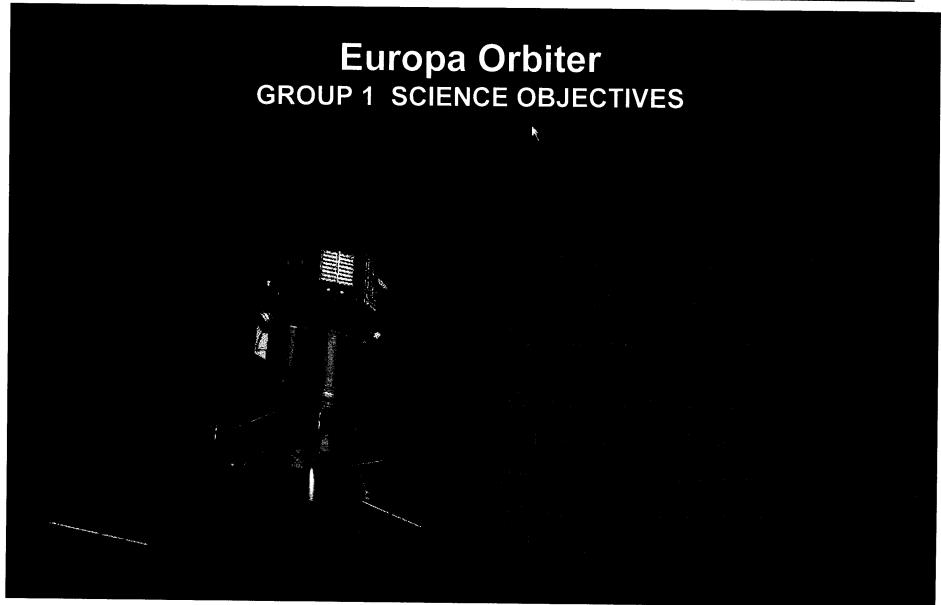


X2000 Briefing

Introduction

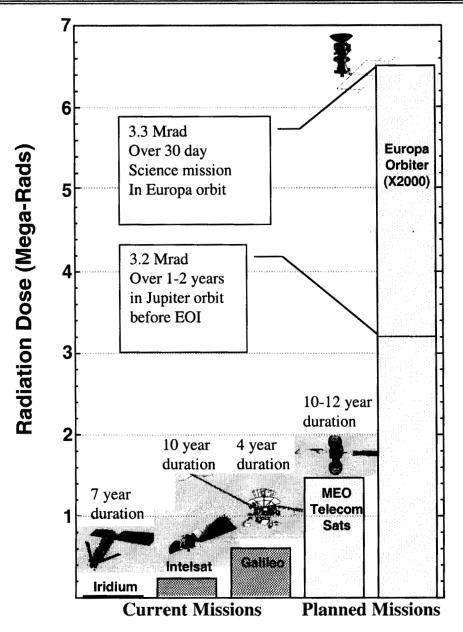
Karla B. Clark Europa Orbiter Flight System Manager 818-354-9033


Karla.B.Clark@jpl.nasa.gov

Wednesday, February 13, 2002

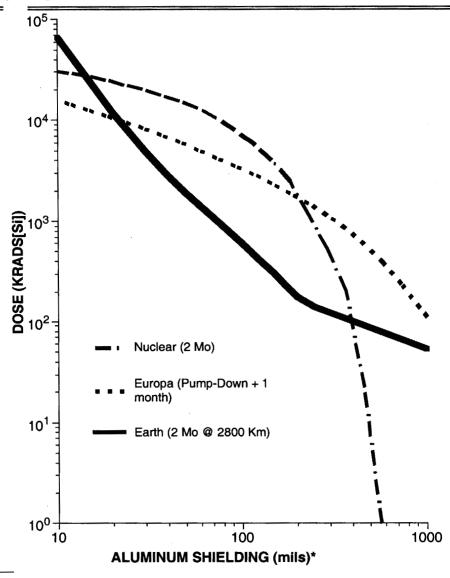
Science Objectives

Three Characteristics


Three characteristics drive to cost and complexity of the Europa Orbiter Mission:

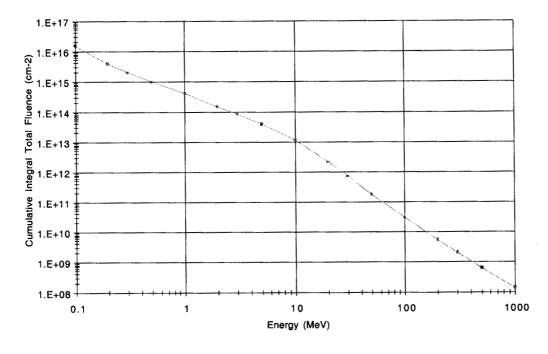
- Radiation Environment
- Radioisotope Power Source
- High Launch & Trajectory Energy Requirements

EO Mission Radiation Environment



- The Europa Orbiter total dose environment is harsh compared to current experience
 - At Europa an astronaut inside an EVA suit receives a lethal dose every 12 minutes
- The Europa Orbiter must operate with high reliability during the 30 day mission
 - Science objectives
 - Achieve quarantine orbit
- Impact
 - High technology, high risk, high cost electronics development (X2000) to reduce risk
 - Total shielding = 39 kg

EUROPA AND EARTH RADIATION ENVIRONMENTS VERSUS SATURATED NUCLEAR ENVIRONMENT

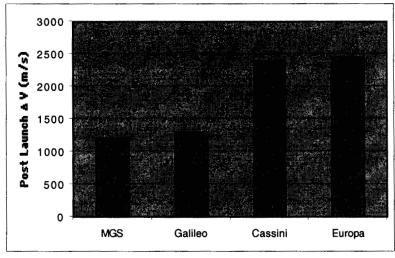

^{*4}π Spherical Shell

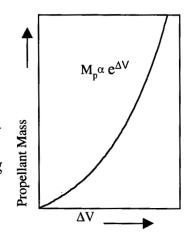
Radiation Fluence by Energy Level

Cumulative Integral Total Fluence for Low Radiation Tour (Electron Fluence for Pump-Down and Proton+Electron Fluence for 30-day Orbit)

Radiation Contacts:

- Martin Ratliff, Ph.D.(Physics) Jupiter environment, radiation transport
 - Senior Technical Staff
 - martin.ratliff@jpl.nasa.gov
 - phone: (818) 354-2261
 - fax: (818) 393-4699
- Insoo Jun, Ph.D.(Nuclear Engineering) -Monte Carlo radiation transport
 - Senior Technical Staff
 - insoo.jun@jpl.nasa.gov
 - phone: (818) 354-7107
 - fax: (818) 393-4699

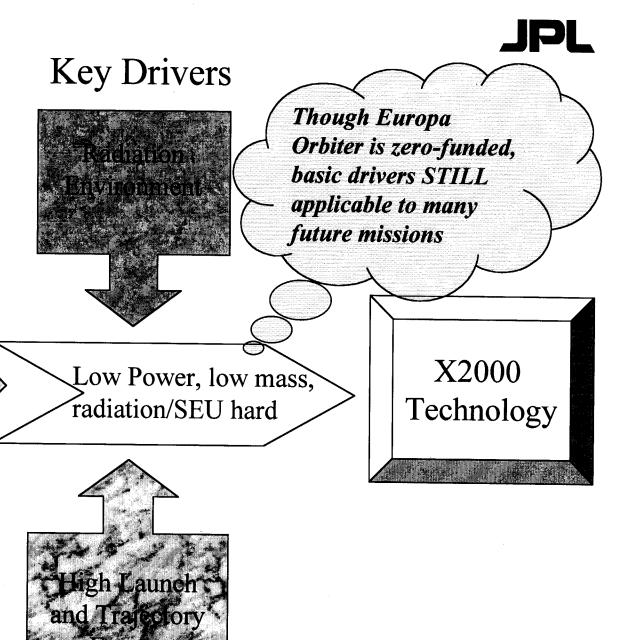

- High development cost
 - \$44M for Cassini heritage RTGs plus \$32M Plutonium cost (DOE estimate)
- EIS development and launch approval process
 - \$12M minimum Europa cost over 6 year duration
- Flight termination system modification complexity and cost for use of solid rocket motor upper stage with radioisotopes (new requirement)
 - \$15M mission unique cost held above core launch vehicle cost
- High mass per watt produced
 - 56 kg per Cassini heritage RTG, 112kg total for Europa Orbiter
 - 5 watts/kg specific power for Cassini heritage RTG (~same for Stirling)


Europa Orbiter Mission High Launch & Trajectory Energy Requirement

- Complex 1-2 year tour to reduce arrival energy (total direct to EOI would be ~6000 m/s; equivalent to Centaur class stage at Europa)
- Large bi-propellant propulsion system to achieve JOI/EOI ΔV

Fully Fueled
Europa Orbiter

Propellant: 1149 kg
Prop Dry: 149 kg
Total Propulsion 1298 kg
Total Launch 2100 kg



- Kick stage required for direct launches
 - Up to \$25 M cost of development
 - Flight termination system modification cost reserve \$15M
- High launch energy requirement for direct launches
 - Delta IV H

Radioisotope

Power

Performance Enhancements:

Next generation spacecraft microprocessor technology – RAD750; 240 MIPS Dense 2 Gbit Non-Volatile Memory, low mass and power Fault tolerant tree topology using IEEE-1394a (Firewire) bus, 1000 Mbps Low power, fault tolerant I²C serial bus, 100 kbps

Advantages:

Increased/Improved On-Board Data Processing and Handling Increased on-board autonomy

Disadvantages:

Non-Volatile Memory not Radiation Hardened – requires significant shielding

Many Instruments and sensors not yet 1394a compatible

Technology Pushes:

Honeywell HX3000 ASIC line – increased functionality, maximum speed 250 Mhz, 3.3 V, Radiation/SEU hardened (1 Mrad)

Honeywell HX2000 ASIC line – Increased functionality for Mixed Signal and Power ASICs, maximum speed 100Mhz, 3.3 V and 5 V, High voltage transistors, Radiation/SEU hardened (1 Mrad), Redundancy on single chip BAE SYSTEMS Manassas ASIC line – 0.5 u, 3.3 V, Radiation/SEU hardened (1 Mrad) U.S. Foundry ASIC Line – 0.25u 2.5V/3.3V (I/O), Radiation/SEU hardened line (200Krad)

Advantages:

Low voltage leads to lower power
Inherent radiation hardness allows less mass
Creating libraries of cells to benefit future designs
Learning "idiosyncrasies" of ASIC lines and physical limitations

Disadvantages:

Has been difficult characterizing line and stabilizing ASIC design processes High voltage power circuit design on low voltage process introduces unknowns Lower voltages introduce signal sensitivity issues

Compact, Modular, Scaleable:

compactPCI 3U form factor packaging approach

Smart power switching - Power Activation and Switching Module (PASM)

Advanced high efficiency power converter

Ball/Column Grid and High Density Interconnect Packaging

Expandable, multidrop busses

Advantages:

Decreases mass, volume

Allows flexibility in configuration

Disadvantages:

High development cost

New qualification

Technology limits circuit/functionality denseness

Rework limitations

Ease of Implementation:

Open architecture for advanced spacecraft systems based on commercial/ standardized electrical and mechanical interfaces Incorporates commercial IP into avionics system for space application

Advantages:

Allows commercial test equipment and software

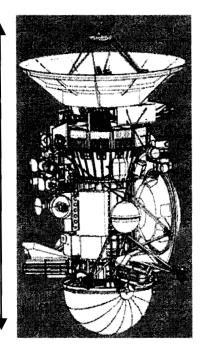
Allows pre-tested interfaces prior to final integration

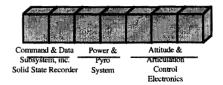
Provides low-cost commercial testbed for early flight software development

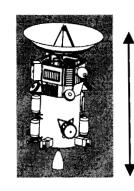
Disadvantages:

Commercial IP not flight qualified, test benches not to level of rigor required for flight validation

Propriety nature of Commercial IP does not allow for easy de-bugging of issues


Commercial IP required significant fault protection enhancement


X2000: Contributions and Users


Cassini S/C 22.3 ft (6.7 m)

Cassini Bays

Europa Orbiter S/C 11.4 ft (3.5 m)

X2000 First Delivery Chassis

Electronics

X2000 Users

JPL

- Europa Orbiter Full Flight Set
- Deep Impact Flight Computer/ Nonvolatile Memory/ System Interface ASIC
- ST-3 Flight Computer/ Nonvolatile Memory/ System Interface ASIC
- Mars 07 Considering Full Flight Set
- SIM 8 Flight Computers baselined
- Technologies Various new concepts that utilize the X2000 ASICs

GSFC/NOAA

 NPP (NPOESS Preparatory Project)/NPOESS - Flight Computer & 1394 bus baselined (SIO)

DOD

• SBIRS Low - Considering Avionics

Mass (kg)	170	43 Plus Shielding of 13kg for X2000 electronics only
Power (W)	137	167 at Orbit Insertion
Volume (m ³)	.252	.074
Hardness (krads)	350	5000
Processing Speed (MIPS)	1	60-200 Effective (240 MIPS Dhrystone)

Next Steps

- Current X2000 development schedule is based on previous Europa Orbiter schedule and funding profile
- Europa Orbiter was Zero-funded in President's Budget Submittal (released 2/4/02) for 2003 and beyond
- X2000 development was fully funded in same budget for completion in 2005
- X2000 development will be re-planned over next few months to fit within latest funding profile
 - Some milestones are expected to move forward
 - Scope expected to remain the same